

Advances in Glazing Materials for Windows

Research and development into

types of glazing have created a new generation of materials that offer improved window effi-

ciency and performance for consumers. While this new generation of glazing materials quickly gains acceptance in the

marketplace, the research and development of even more efficient technologies continues.

Current Options That Increase a Window's Energy Efficiency

Manufacturers usually represent the energy efficiency of windows in terms of their U-values (conductance of heat) or their R-values (resistance to heat flow). If a window's R-value is high, it will lose less heat than one with a lower R-value. Conversely, if a window's U-value is low, it will lose less heat than one with a higher U-value. In other words, U-values are the reciprocals of R-values (U-value = 1/R-value).

Usually, window R-values range from 0.9 to 3.0 (and U-values range from 1.1 to 0.3), but some highly energy-efficient exceptions also exist. When comparing different windows, you should ensure that all U- or R-values listed by manufacturers:

- are based on current standards set by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers.
- * are calculated for the entire window, including the frame, and not just for the center of the glass, and
- * represent the same size and style of window.

Today, several types of advanced glazing systems are available to help control heat loss or gain. The advanced glazings include double- and triple-pane windows with such coatings as low-emissivity (low-e), spectrally selective, heat-absorbing (tinted), or reflective; gas-filled windows; and windows incorporating combinations of these options.

Low-e Glazings

Low-e glazings have special coatings that reduce heat transfer through windows. The coatings are thin, almost invisible metal oxide or semiconductor films that are placed directly on one or more surfaces of glass or on plastic films between two or more panes. The coatings typically face air spaces within windows and reduce heat flow between the panes of glass.

When applied inside a double-pane window, the lowe coating is placed on the outer surface of the inner pane of glass to reflect heat back into the living space during the heating season. This same coating will slightly reduce heat gain during the cooling season.

Low-e films are applied in either soft or hard coats. Soft-coat low-e films degrade when exposed to air and moisture, are easily damaged, and have a limited shelf

Summary

Until recently, clear glass was the primary glazing material used in windows. Although glass is durable and allows a high percentage of sunlight to enter buildings, it has very little resistance to heat flow. During the past two decades, though, glazing technology has changed greatly.

life, so they are carefully applied by manufacturers in insulated multiple-pane windows. Hard low-e coatings, on the other hand, are more durable and can be used in add-on (retrofit) applications. But the energy performance of hard-coat low-e films is slightly poorer than that of soft-coat films. Windows manufactured with lowe films typically cost about 10 percent to 15 percent more than

regular windows, but they reduce energy loss by as much as 30 percent to 50 percent.

Although low-e films are usually applied during manufacturing, retrofit low-e window films are also widely available for do-it-yourselfers. These films are inexpensive compared to total window replacements, last 10 to 15 years without peeling, save energy, reduce fabric fading, and increase comfort.

Spectrally Selective Coatings

Spectrally selective (optical) coatings are considered to be the next generation of low-e technologies. These coatings filter out from 40 percent to 70 percent of the heat normally transmitted through clear glass, while allowing the full amount of light to be transmitted. Spectrally selective coatings can be applied on various types of tinted glass to produce "customized" glazing systems capable of either increasing or decreasing solar gains according to the aesthetic and climatic effects desired.

Computer simulations have shown that advanced glazings with spectrally selective coatings can reduce the electric space cooling requirements of new homes in hot climates by more than 40 percent.

Heat-Absorbing Glazings

Another technology uses heat-absorbing glazings with tinted coatings to absorb solar heat gain. Some heat, however, continues to pass through tinted windows by conduction and reradiation. But inner layers of clear glass or spectrally selective coatings can be applied with tinted glass to further reduce this heat transfer. Heat-absorbing glass reflects only a small percentage of light and therefore does not have the mirror-like appearance

of reflective glass.

Gray- and bronze-tinted windows reduce the penetration of both light and heat into buildings in equal amounts (i.e., not spectrally selective) and are the most common tint colors used. On the other hand, blue- and green-tinted

windows offer greater penetration of visible light and slightly reduced heat transfer compared with other colors of tinted glass. When windows transmit less than 70 percent of visible light, plants inside could die or grow more slowly. In hot climates black-tinted glass should be avoided because it absorbs more light than heat.

Reflective Coatings

Like black-tinted coatings, reflective coatings greatly reduce the transmission of daylight through clear glass. Although they typically block more light than heat, reflective coatings, when applied to tinted or clear glass, can also slow the transmission of heat. Reflective glazings are commonly applied in hot climates in which solar control is critical; however, the reduced cooling energy demands they achieve can be offset by the resulting need for additional electrical lighting.

Tomorrow's Options for More Efficient Windows

"Superwindows" can attain high thermal resistance by combining multiple low-e coatings; low-conductance gas fills; barriers between panes, which reduce convective circula-

tion of the gas fill; and insulating frames and edge spacers.

Also, optical properties such as solar transmittance can be customized for specific climate zones. The heat from even a small amount of diffuse winter sunlight will convert these super-windows into net suppliers of energy. This first generation of superwindows have a center-of-glass R-value of 8 or 9, but have an overall window R-value of only about 4 or 5 because of edge and frame losses.

Also under development are chromogenic (optical switching) glazings that will adapt to the frequent changes in the lighting and heating or cooling requirements of buildings. These "smart windows" will be separated into either passive or active glazing categories.

Passive glazings will be capable of varying their light transmission characteristics according to changes in sunlight (photochromic) and their heat transmittance characteristics according to ambient temperature swings (thermochromic). Active (electrochromic) windows will use a small electric current to alter their transmission properties.

Conclusion

No one type of glazing is suitable for every application. Many materials are available that serve different purposes. Moreover, consumers may discover that they need two types of glazing for a home because of the directions that the windows face and the local climate. To make wise purchases, consumers should first examine their heating and cooling needs and prioritize desired features such as daylighting, solar heating, shading, ventilation, and aesthetic value.

Resources

The following organizations and publications provide more information on advances in glazing technology.

Alliance to Save Energy

1200 18th Street N.W., Suite 900 Washington, D.C. 20036

Phone: 202-530-2245 Fax: 202-331-9588

Email: ewc@ase.org

Provides unbiased information on the benefits of energy-efficient windows, descriptions of how they work, and recommendations for their selection and use.

The Energy Efficiency and Renewable Energy Clearinghouse

P.O. Box 3048 Merrifield, VA 22116

Phone: 1-800-363-3732 Fax: 703-893-0400

Email: doe.erec@nciinc.com Web site: www.eren.doe/erec/

The Clearing House provides free general and technical information to the public on the many topics and technologies pertaining to energy efficiency and renewable energy.

Lawrence Berkeley National Laboratory

1 Cyclotron Road, MS 90-3111 Berkeley, California 94720 Phone: 510-486-4000 Web site: http://www.lbl.gov/

Provides technical support to government and industry efforts to help architects, engineers, and other commercial building specifiers choose energy-efficient and cost-effective residential windows.

National Fenestration Rating Council

1300 Spring Street, Suite 500 Silver Spring, MD 20910 Phone: 301-589-6372 Email: info@nfrc.org

Developed the *Procedure for Determining Fenestration Product Thermal Properties* (NFRC 100-91). These procedures are now being used in NFRC's window certification and efficiency labeling programs, which have already been adopted by three states.

Window & Door Manufacturers Association

1400 East Touhy Avenue, Suite 470

Des Plaines, IL 60018

Phone: 1-800-223-2301 Fax: 847-299-1286

Email: admin@wdma.com

A trade association representing U.S. and Canadian manufacturers and suppliers of windows and doors for the domestic and export markets.

More Information

Energy-Efficient Windows

http://www.eren.doe.gov/erec/factsheets/eewindows.html Solar Heat Gain Control for Windows

http://www.eren.doe.gov/consumerinfo/refbriefs/eb2.html Window Options for Passive Solar

http://www.eren.doe.gov/erec/factsheets/window_options.html

Produced by the Nebraska Energy Office 1111 "O" Street, Suite 223 P.O. Box 95085, Lincoln, NE 68509 Phone 402-471-2867, Fax 402-471-3064 email: energy@mail.state.ne.us www.nol.org/home/NEO

This document is based on DOE/CH10093-332, FS219, produced November 1994 for the U.S. Department of Energy by the National Renewable Energy Laboratory.

Other factsheets and additional information can also be found at: www.nol.org/home/NEO/home_const/design_build.htm

This fact sheet was partially financed through the Nebraska Department of Environmental Quality Litter Reduction and Recycling Program.